

Communication

Catalytic O Evolution from Water Induced by Adsorption of [(OH)(Terpy)Mn(I-O)Mn(Terpy)(OH)] Complex onto Clay Compounds

Masayuki Yagi, and Komei Narita

J. Am. Chem. Soc., 2004, 126 (26), 8084-8085• DOI: 10.1021/ja039780c • Publication Date (Web): 11 June 2004

Downloaded from http://pubs.acs.org on March 31, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 7 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 06/11/2004

Catalytic O₂ Evolution from Water Induced by Adsorption of $[(OH_2)(Terpy)Mn(\mu-O)_2Mn(Terpy)(OH_2)]^{3+}$ Complex onto Clay Compounds

Masayuki Yagi* and Komei Narita

Faculty of Education and Human Sciences, and Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi-2, Niigata 950-2181, Japan

Received November 25, 2003; E-mail: yagi@ed.niigata-u.ac.jp

Water oxidation to evolve O_2 (eq 1) is an important and fundamental chemical reaction in photosynthesis. This reaction is catalyzed by a unique manganese enzyme referred to as oxygenevolving complex (OEC), whose active site is comprised of an oxobridged tetramanganese cluster.¹⁻⁴ Though synthetic manganese oxo complexes have guided thoughts on the chemical and electronic structures of the OEC,^{1,2} most of the structural models have not catalyzed water oxidation to evolve O_2 in a homogeneous aqueous solution so far.^{5,6}

$$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$$
 (1)

Limburg et al. reported O₂ evolution from water by the reaction of $[(OH_2)(terpy)Mn^{III}(\mu-O)_2Mn^{IV}(terpy)(OH_2)]^{3+}$ (terpy = 2,2':6',2"-terpyridine) (1) with NaClO or KHSO₅.^{7,8} However, the mechanism of the O₂ formation is completely unclear, including even disproportionation of $2ClO^- \rightarrow O_2 + 2Cl^-$, which is known to be catalyzed by Mn^{II} and other Lewis acids.⁵ To exclude this possibility, O₂ evolution experiments should be conducted using oxidizing agents that do not contain any oxygen atoms.

We reported that in water oxidation by $[Ru(NH_3)_5Cl]^{2+}$, a favorable intermolecular interaction is provided for the cooperative catalysis in a solid polymer matrix relative to a homogeneous solution to increase the catalytic activity.⁹ This result encouraged us to design a heterogeneous catalysis system as a strategy for realizing catalytic O₂ evolution from water by manganese—oxo complexes. The adsorption of **1** onto clay compounds yielded a successful functional mimic for OEC. Herein we report that the reaction of **1** with a Ce^{IV} oxidant leads to decomposition of **1** to MnO_4^- without O₂ evolution in an aqueous solution but catalytically produces O₂ from water when **1** is adsorbed on clay compounds.

Water oxidation by **1** was investigated in a solution using a Ce^{IV} oxidant. Figure 1a shows the time course of the amount of O₂ involved in the aqueous solution containing 0.42 mM **1** and a large excess of Ce^{IV} ion (50 mM) measured by a Clark-type oxygen electrode. O₂ evolution was not observed compared with a blank experiment without **1** (Figure 1b), nor was O₂ evolved using a 10-fold larger concentration of **1** (5 mM **1**, 100mM Ce^{IV}). It was concluded that the reaction of **1** with a Ce^{IV} oxidant evolves no O₂,¹⁰ which contrasts markedly with the catalytic O₂ evolution reported previously using **1** and either NaClO or KHSO₅ as oxidants.^{7.8} A detailed re-examination of the proposed O₂ evolution mechanism should be required in the previous system.

Surprisingly, when a comparable amount (0.72 μ mol) of **1** as used in solution was adsorbed onto Kaolin clay, the addition of a large excess of Ce^{IV} ion to its aqueous suspension produced a significant amount of O₂, as shown in Figure 1c. The control experiment using the same amount of Kaolin clay without **1** did not exhibit any O₂ evolution (Figure 1d). A prolonged experiment over 7 days using a gas chromatograph for O₂ detection gave a turnover number (TN) of 13.5 \pm 1.1 (average for three trials) under the

Figure 1. Time courses of the amount of O_2 evolved in reaction of 1 and a 50 mM Ce^{IV} oxidant. (a) Aqueous solution of 1 (0.84 μ mol; 0.42 mM). (b) Aqueous solution without 1 for a blank experiment. (c) Aqueous suspension of Kaolin clay (75 mg) adsorbing 1 (0.72 μ mol (0.46 mg); 9.6 μ mol (6.2 mg)/clay g). (d) Aqueous suspension of Kaolin clay (75 mg) without 1 for a control experiment; liquid volume, 2.0 mL; pH = 1.0.

following conditions: $0.46 \,\mu$ mol of $1/50 \,\text{mg}$ of clay, $100 \,\text{mM} \,\text{Ce}^{\text{IV}}$, $10 \,\text{mL}$. These results evidently reveal that adsorbed 1 catalyzes O_2 evolution.

To identify an oxygen atom source for O₂ evolution, ¹⁸O-labeling experiments were conducted using H₂¹⁸O. The evolved gas was analyzed on an electron-impact-ionization mass (EIMS) spectrometer. The experiments in H₂¹⁸O media gave peaks at m/z = 34 and 36, corresponding to ¹⁶O¹⁸O and (¹⁸O)₂, in addition to the peak for (¹⁶O)₂ at m/z = 32, in contrast to no peaks at m/z = 34 and 36 for natural abundance water (Figure S1). The content fraction of ¹⁸O atom in O₂ evolved is consistent with the ¹⁸O content in the water. (The content fractions are 23 and 42 for 23.8 and 47.5 v/v % H₂¹⁸O, respectively; see Table S1.) The O₂ evolution was thus confirmed to come exclusively from water.

To define the catalysis by **1** adsorbed on the clay, similar O_2 evolution experiments were extended to various manganese species, including manganese oxides (MnO₂ and Mn₂O₃), Mn²⁺, Mn³⁺, and MnO₄⁻ ions in solutions, as well as adsorbed Mn²⁺, Mn³⁺, and terpyH_nⁿ⁺ on Kaolin clay. In none of the trials using these species was O₂ evolution detected. These results show the uniqueness of the catalysis by **1** adsorbed on the clay.

UV-visible diffuse reflectance and X-ray absorption spectroscopic measurements were carried out to characterize **1** adsorbed on clay (Figures S2–S6). The diffuse reflectance spectrum of the **1**/clay adsorbate was similar to the absorption spectrum of the Mn^{IV}-Mn^{IV} state in water rather than the Mn^{III}-Mn^{IV} state. The oxidation to Mn^{IV}-Mn^{IV} was supported by Mn K-edge X-ray absorption near-edge structure (XANES) spectroscopic data in which the Mn K-edge shifted to a higher energy region by 3.2 eV at the peak versus that for **1** as a powder. Mn K-edge extended X-ray absorption fine structure (EXAFS) spectrum of the **1**/clay adsorbate did not show an appreciable change compared with that

Figure 2. Plots of initial rate $(v_{O_2} \pmod{s^{-1}})$ of O_2 evolution and yield $(\Phi_{MnO_4^-})$ of MnO_4^- formation versus the amount of the adsorbed complex on clay; (a) v_{O_2} for 1 (closed red circle), (b) $\Phi_{MnO_4^-}$ for 1 (open red circle), and (c) v_{O_2} for 2 (closed blue square). Kaolin clay amount was 75 mg. The conditions are indicated in Figure 1.

for **1** as a powder. These data could suggest that **1** is autoxidized to the $Mn^{IV}-Mn^{IV}$ state on the clay possibly by a silicate layer without a significant change in its original coordination structure. Preliminary X-ray absorption spectroscopic data of the **1**/clay adsorbate treated with an Ce^{IV} oxidant indicated that the Mn^{IV}-Mn^{IV} species exists before and after the catalysis for 30 min, in contrast to the further oxidized species suggested by the corresponding data for **1** with a Ce^{IV} solution.

The visible absorption spectral change of the aqueous solution containing **1** and a large excess of Ce^{IV} ion was followed to see what reactions are happening in solution. The spectral change indicated the formation of MnO₄⁻ from **1**. The kinetic analysis showed that a bimolecular reaction of **1** is involved in a rate-determining step of the MnO₄⁻ formation (Figures S7 and S8). It is possibly formed by disproportionation of the high oxidation state. The yield (Φ_{MnO_4} ⁻) of MnO₄⁻ formed during a 30 min reaction was 30–86% (0.05–2 mM **1**, 50 mM Ce^{IV}, 2.0 mL) in the solution. For the **1**/clay adsorbate, MnO₄⁻ (18–32%; 0.15–0.81 μ mol **1**/75 mg clay, 2.0 mL) is much less than in the homogeneous solution,¹¹ showing that adsorption of **1** onto the clay significantly suppresses their disproportionation to form MnO₄⁻.

The plots of the initial O₂ evolution rates (v_{O_2} (mol s⁻¹)) vs the amount of 1 adsorbed on the clay gave upward curvature in Figure 2a, showing that the specific O₂ evolution rate increases as the amount of 1 on the clay increases. The kinetic analysis of v_{0_2} suggests that the predominant O2 evolution is produced by a bimolecular reaction of adsorbed 1 (see Supporting Information). Most likely, two molecules of 1 cooperatively catalyze O2 evolution between complexes adsorbed in close proximity to each other on the clay. In contrast, Φ_{MnO_4} decreased with the amount of 1, as illustrated in Figure 2b. There could be local adsorption equilibria of 1 at the interface between the clay and liquid phase. $MnO_4^$ prefers to be formed in the liquid-phase rather than on the clay since the MnO_4^- formation is suppressed by the adsorption of 1 on the clay (vide supra). As the amount of adsorbed 1 increases, the fraction of 1 subject to MnO₄⁻ formation decreases in competition with facilitated bimolecular O2 evolution.¹² The MnO4formation might still occur on the clay, but it could be much slower relative to the O₂ evolution.

To evaluate the mechanism of the O_2 evolution by **1**, $[(bpy)_2-Mn^{II}(\mu-O)_2Mn^{IV}(bpy)_2]^{3+}$ (**2**), which has a structure comparable with **1** but no terminal water ligands, was used for similar experiments in both solution and on Kaolin clay. O_2 was evolved

for 2/clay, but not at all for the solution. However, the saturated amount of O_2 was 0.51 μ mol at 99 h for 2/clay, and the TN (0.63) of 2 is less than unity. The v_{O2} for 2 (Figure 2c) is much lower than that for 1 comparing the same amount of the adsorbed complex under the conditions employed.¹³ These results suggest that the terminal water ligands are involved in the catalysis. It may take place by intermolecular coupling of $Mn^V = O$ that could be formed by successive oxidation of a terminal water ligand on 1. However, no evidence for involvement of $Mn^V = O$ in the catalysis is obtained. The adsorption of 1 onto the clay suppressed the decomposition to form MnO_4^- and results in a highly concentrated condition compared with solutions, thus facilitating the cooperative catalysis to form O_2 . This could account for the adsorption-induced catalytic activity.

The adsorption of **1** on Montmorillonite MK10 clay also produced catalytic O_2 evolution from water, extending the generality of the adsorption-induced catalytic activity of **1**. The plots of v_{O_2} vs the amount of adsorbed **1** on Montmorillonite also provided an upward curvature (Figure S9). The observed catalytic activity depends on the degree of the concentration onto clays, and the intrinsic catalytic activity of **1** is basically the same between both clays. These results support the cooperative interaction proposed in the adsorption-induced catalytic activity of **1**. The present paper illustrates that the adsorption of **1** onto a heterogeneous matrix is required for catalytic O_2 evolution from water.

Acknowledgment. We thank Dr. T. Sato for help with EIMS experiments and Dr. K. Shimizu for help with X-ray absorption spectroscopic measurements. Research was supported by Toray Science and Technology Grant, Nissan Science Foundation, and Grant for Promotion of Niigata University Research Projects.

Supporting Information Available: Detailed experimental procedures for catalysis, spectroscopic data (UV–vis, XANES, and EXAFS) of 1/clay adsorbate, kinetic analysis for MnO_4^- formation, and v_{O_2} data for 1 or 2/Montmorillonite (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Yachandra, V. K.; Sauer, K.; Klein, M. P. Chem. Rev. 1996, 96, 2927– 2950.
- (2) Carrell, T. G.; Tyryshkin, A. M.; Dismukes, G. C. J. Biol. Inorg. Chem. 2002, 7, 2–22.
- (3) Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. *Nature* **2001**, *409*, 739–743.
- (4) Nugent, J. Biochim. Biophys. Acta, Bioenerg. 2001, 1503.
- (5) Yagi, M.; Kaneko, M. Chem. Rev. 2001, 101, 21-35.
- (6) Ruettinger, W.; Dismukes, G. C. Chem. Rev. 1997, 97, 1-24.
- (7) Limburg, J.; Vrettos, J. S.; Liable-Sands, L. M.; Rheingold, A. L.; Crabtree, R. H.; Brudvig, G. W. *Science* 1999, 283, 1524–1527.
- (8) Limburg, J.; Vrettos, J. S.; Chen, H. Y.; de Paula, J. C.; Crabtree, R. H.; Brudvig, G. W. J. Am. Chem. Soc. 2001, 123, 423–430.
- (9) Yagi, M.; Nagoshi, K.; Kaneko, M. J. Phys. Chem. B 1997, 101, 5143-5146.
- (10) A similar experiment using the aqueous solution containing 0.42 mM 1 and 50 mM Ce^{IV} at pH = 3.0 did not yield O₂ evolution at all, though 1 is intact at pH = 3-6 in the solution.
- (11) MnO_4^- formed in the clay should come out of the anionic clay to the bulk solution. We confirmed that MnO_4^- cannot be adsorbed on clay at all.
- (12) Without the catalytic activity of 1 adsorbed on clay, the Φ_{MnO_4} could increase linearly with the adsorption amount of 1 by the increased bimolecular decomposition of 1. The Φ_{MnO_4} decrease suggests that the O₂ evolution is correlated to MnO_4 formation. This could be explained by the O₂ evolution by adsorbed 1 that competes with the bimolecular decomposition to form MnO_4 –.
- (13) v₀₂ increased linearly with the amount of 2 on Kaolin (Figure 2c), indicating unimolecular O₂ evolution in contrast with bimolecular catalysis of 1. The unimolecular O₂ evolution might be explained by either O⁻⁻O coupling of di-μ-O bridges or attack of outer-sphere water onto a μ-O bridge in high oxidation species, probably including μ-O⁻ radical bridges. A coupling of di-μ-O⁻ radical bridges in a Mn(μ-O)₂Mn unit was proposed by Yachandara et al. as a possible mechanism of O₂ production in OEC based on EXAFS results.

JA039780C